Typing ====== Type aliases ############ .. code-block:: python from typing import List Vector = List[float] def scale(scalar: float, vector: Vector) -> Vector: return [scalar * num for num in vector] NewType ####### .. code-block:: python from typing import NewType UserId = NewType('UserId', int) Callable ######## Frameworks expecting callback functions of specific signatures might be type hinted using: :code:`Callable[[Arg1Type, Arg2Type], ReturnType]` For example: .. code-block:: python from collections.abc import Callable def feeder(get_next_item: Callable[[], str]) -> None: # Body def async_query(on_success: Callable[[int], None], on_error: Callable[[int, Exception], None]) -> None: # Body async def on_update(value: str) -> None: # Body callback: Callable[[str], Awaitable[None]] = on_update It is possible to declare the return type of a callable without specifying the call signature by substituting a literal ellipsis for the list of arguments in the type hint: :code:`Callable[..., ReturnType]` Generics ######## Generics can be parameterized by using a factory available in typing called TypeVar. .. code-block:: python from collections.abc import Sequence from typing import TypeVar T = TypeVar('T') # Declare type variable def first(l: Sequence[T]) -> T: # Generic function return l[0] Here the return type is "linked" to the parameter type: whatever you put into the function, the same thing comes out. .. code-block:: python T = TypeVar('T') # Can be anything S = TypeVar('S', bound=str) # Can be any subtype of str A = TypeVar('A', str, bytes) # Must be exactly str or bytes U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method X = TypeVar('X', covariant=True) # Allowing Subclasses to be used Y = TypeVar('Y', contravariant=True) # Allowing Parent class to be used More info about covariant and contravariant parameters in the PEP 484: https://peps.python.org/pep-0484/#covariance-and-contravariance User-defined generic types ########################## A user-defined class can be defined as a generic class. The type is stated when we instantiate the class. .. code-block:: python from typing import Dict, Generic, TypeVar T = TypeVar("T") class Registry(Generic[T]): def __init__(self) -> None: self._store: Dict[str, T] = {} def set_item(self, k: str, v: T) -> None: self._store[k] = v def get_item(self, k: str) -> T: return self._store[k] if __name__ == "__main__": family_name_reg = Registry[str]() family_age_reg = Registry[int]() family_name_reg.set_item("husband", "steve") family_name_reg.set_item("dad", "john") family_age_reg.set_item("steve", 30) Nominal vs structural subtyping ############################### .. code-block:: python from collections.abc import Iterator, Iterable class Bucket: # Note: no base classes ... def __len__(self) -> int: ... def __iter__(self) -> Iterator[int]: ... def collect(items: Iterable[int]) -> int: ... result = collect(Bucket()) # Passes type check :code:`Bucket` is implicitly considered a subtype of both **Sized** (:code:`from collections.abc import Sized`) and **Iterable[int]** (:code:`from collections.abc import Iterable`) by static type checkers thanks to the definition of methods :code:`__len__` and :code:`__iter__`. This is known as structural subtyping (or static duck-typing). MyPy #### You can use **mypy** (:code:`conda install -c conda-forge mypy`) to check the correct typing of your project/script. Examples ######## Multiple possible input type: .. code-block:: python from tying import Union from numbers import Number Union[Number, str] Generator function (yield): .. code-block:: python from collections.abc import Generator def test(N: int) -> Generator[int]: for k in range(N): yield k Iterable object: .. code-block:: python from collections.abc import Iterable def test(params: Iterable[int]): for p in params: print(p) ------------------------------------------------------------ **Sources**: - Official Typing Python 3 Documentation https://docs.python.org/3/library/typing.html - Typevars explained: https://dev.to/decorator_factory/typevars-explained-hmo - Understanding Generics Typing: https://medium.com/@steveYeah/using-generics-in-python-99010e5056eb - Understanding covariance and contravariance in TypeVar: https://peps.python.org/pep-0484/#covariance-and-contravariance