Fourier Transform ================= DFT: Discrete Fourier Transform 1D FFT Transform ################ .. code-block:: python import numpy as np import matplotlib.pyplot as plt # Sample Period/Frequency in second/hertz Ts = 0.001 Fs = 1.0 / Ts # Number of sample N = 10000 # Time abscissa t = np.arange(0, N) * Ts # Example of a signal: sum of 2 sinus signal # A1, A2: Amplitude (no unit) # f1, f2: Frequency (Hertz) # p1, p2: Phase (Radian) # Offset offset = 2.0 # 1st sinus parameters A1 = 1.0 f1 = 255.0 p1 = 1.0 # 2nd sinus parameters A2 = 3.0 f2 = 78.0 p2 = np.pi / 3.0 # Signal to analyse x = offset x += A1 * np.sin(2 * np.pi * f1 * t + p1) x += A2 * np.sin(2 * np.pi * f2 * t + p2) fig = plt.figure(figsize=(8, 4), tight_layout=True) ax1 = fig.add_subplot(111) ax1.set_title("Input signal") ax1.set_xlabel("Time [s]") ax1.set_ylabel("Amplitude") ax1.grid() ax1.plot(t, x, '-x') ax1.set_xlim([0, 0.4]) fig.savefig("input_1d.png", dpi=200) # Performing fast fourrier transform fft_x = np.fft.fft(x, n=2**17) # f = [-N/2, ..., -1, 0, 1, ..., N/2-1] / (Ts*N) if N is even # f = [-(N-1)/2, ..., -1, 0, 1, ..., (N-1)/2] / (Ts*N) if N is odd f = np.fft.fftshift(np.fft.fftfreq(len(fft_x), Ts)) abs_fft_x_unshifted = np.abs(fft_x) angle_fft_x_unshifted = np.angle(fft_x) abs_fft_x = np.fft.fftshift(abs_fft_x_unshifted) angle_fft_x = np.fft.fftshift(angle_fft_x_unshifted) # Fourier Series Coefficients Normalization abs_fft_x_norm = abs_fft_x / N fig = plt.figure(figsize=(10, 8)) fig.set_tight_layout('tight') ax1 = fig.add_subplot(211) ax1.set_xlabel("Frequency [Hz]") ax1.set_ylabel("Amplitude") ax1.set_title("FFT Amplitude (real signal)") ax1.grid() ax1.plot(f, abs_fft_x_norm) ax1.axhline(offset, linewidth=1.0, linestyle='--', color='b', label="offset amplitude") ax1.axhline(A1 / 2.0, linewidth=1.0, linestyle='--', color='r', label="sinusoide 1 amplitude") ax1.axhline(A2 / 2.0, linewidth=1.0, linestyle='--', color='g', label="sinusoide 2 amplitude") ax1.text(f[0], offset - 0.1, "offset", color='b') ax1.text(f[0], A1 / 2.0 + 0.05, "A1/2", color='r') ax1.text(f[0], A2 / 2.0 + 0.05, "A2/2", color='g') ax2 = fig.add_subplot(212, sharex=ax1) ax2.set_xlabel("Frequency [Hz]") ax2.set_ylabel("Phase [rad]") ax2.set_title("FFT Phase (real signal)") ax2.grid() ax2.plot(f, angle_fft_x) fig.savefig("fft_1d.png") .. image:: /assets/fourier/input_1d.png :height: 250pt .. image:: /assets/fourier/fft_1d.png :height: 400pt 2D FFT Transform ################ Image used in this example: Download: :download:`example.pgm `. .. image:: /assets/fourier/example.png :height: 250pt .. code-block:: python import numpy as np import matplotlib.pyplot as plt from PIL import Image plt.ioff() # Loading the 2d data (the grayscale image in this case) img_path = "example.png" matrix_2d = np.array(Image.open(img_path))[::-1] # Shape of the 2d data N_y, N_x = matrix_2d.shape # N_y = 512 ; N_x = 823 # Sampling period [m] in both axis # 8 mm Ts_x = 8e-3 # 6 mm Ts_y = 6e-3 # Plotting the 2d data (in this case the image) fig = plt.figure(figsize=(9, 4), tight_layout=True) ax1 = fig.add_subplot(111) ax1.set_title("Input 2D signal") ax1.set_xlabel("x Length [m]") ax1.set_ylabel("y Length [m]") # X and Y axis x = np.arange(0, N_x + 1) * Ts_x y = np.arange(0, N_y + 1) * Ts_y pcolor = ax1.pcolormesh(x, y, matrix_2d, cmap="gray") cbar = plt.colorbar(pcolor) cbar.set_label('value') ax1.set_aspect(1) fig.savefig("input_2d.png", dpi=200) plt.close(fig) .. image:: /assets/fourier/input_2d.png :height: 300pt .. code-block:: python # Performing fast fourier transform fft_matrix_2d = np.fft.fft2(matrix_2d, s=(2**11, 2**11)) # f = [-N/2, ..., -1, 0, 1, ..., N/2-1] / (Ts*N) if N is even # f = [-(N-1)/2, ..., -1, 0, 1, ..., (N-1)/2] / (Ts*N) if N is odd f_x = np.fft.fftshift(np.fft.fftfreq(fft_matrix_2d.shape[0], Ts_x)) f_y = np.fft.fftshift(np.fft.fftfreq(fft_matrix_2d.shape[1], Ts_y)) abs_fft_unshifted = np.abs(fft_matrix_2d) angle_fft_unshifted = np.angle(fft_matrix_2d) abs_fft = np.fft.fftshift(abs_fft_unshifted) angle_fft = np.fft.fftshift(angle_fft_unshifted) # Fourier Series Coefficients Normalization abs_fft_norm = abs_fft / (N_x * N_y) # Plotting the fft of the 2d data (in this case the image) fig = plt.figure(figsize=(5, 5), tight_layout=True) ax1 = fig.add_subplot(111) fft_plot = ax1.pcolormesh(f_x, f_y, 10.0*np.log10(abs_fft_norm), cmap="inferno", vmin=-40) # fft_plot = ax1.pcolormesh(f_x, f_y, abs_fft, vmax=5) ax1.set_xlabel(r'$[m^{-1}]$') ax1.set_ylabel(r'$[m^{-1}]$') bar = plt.colorbar(fft_plot) bar.set_label("Amplitude [dB]") ax1.set_aspect(1) fig.savefig("fft_2d.png", dpi=200) plt.close(fig) .. image:: /assets/fourier/fft_2d.png :width: 300pt .. code-block:: python # Plotting the useful part of fft (real data) fig = plt.figure(figsize=(5, 5), tight_layout=True) ax1 = fig.add_subplot(111) ind_fx0 = np.argmin(np.abs(f_x)) ind_fy0 = np.argmin(np.abs(f_y)) off_ind_fx0 = int(0.05*len(f_x)) off_ind_fy0 = int(0.05*len(f_y)) fft_plot = ax1.pcolormesh( f_x[ind_fx0-off_ind_fx0:], f_y[ind_fy0-off_ind_fy0:], 10.0*np.log10(abs_fft_norm[ind_fx0-off_ind_fx0:, ind_fy0-off_ind_fy0:]), cmap="inferno", vmin=-40) ax1.set_xlabel(r'$[m^{-1}]$') ax1.set_ylabel(r'$[m^{-1}]$') ax1.set_aspect('equal') bar = plt.colorbar(fft_plot, fraction=0.046, pad=0.04) bar.set_label("Amplitude [dB]") fig.savefig("fft_2d_zoomed.png", dpi=200) plt.close(fig) .. image:: /assets/fourier/fft_2d_zoomed.png :width: 300pt .. code-block:: python # Studing the amplitudes Z = 10.0*np.log10(abs_fft_norm[ind_fx0:, ind_fy0:]) X = f_x[ind_fx0:] Y = f_y[ind_fy0:] fig = plt.figure(figsize=(10, 8), tight_layout=True) ax1 = fig.add_subplot(211) ax1.plot(X, Z[0, :]) ax1.set_xlabel(r'$[m^{-1}]$') ax1.set_ylabel("Amplitude [dB]") ax1.grid() ax2 = fig.add_subplot(212) ax2.set_title("FFT h") ax2.plot(Y, Z[:, 0]) ax2.set_xlabel(r'$[m^{-1}]$') ax2.set_ylabel("Amplitude [dB]") ax2.grid() fig.savefig("zoom_on.png", dpi=200) plt.close(fig) .. image:: /assets/fourier/zoom_on.png :height: 400pt **FFT 2D explained:** .. image:: /assets/fourier/fft_2d_explanations.png :width: 600pt **Generation of the input image above**: .. code-block:: python # Generation of the test image import numpy as np from PIL import Image as PImage resolution = (512, 823) # (Height, Length) img_data = np.zeros(resolution, dtype=np.uint8) tmp = (np.sin(np.arange(resolution[1]) * (2 * np.pi / resolution[1]) * 50) + 1) * (255 / 2) img_data[5:250, :] = tmp.astype(np.uint8) tmp = (np.sin(np.arange(235) * (2 * np.pi / 235) * 40) + 1) * (255 / 2) img_data[265:500, 10:250] = np.repeat(tmp[:, np.newaxis], 240, axis=1).astype(np.uint8) for k in range(0, 240): tmp = (np.sin(np.arange(235) * (2 * np.pi / 235) * 17 - k * (np.pi / 2.3)) + 1) * (255 / 2) img_data[265:500, 265 + k] = tmp img = PImage.fromarray(img_data) img.save("example.png") FFT Normalization Explained ########################### TO DO: - FFT computing Fourier Series Coefficients: / N - FFT approximating a continuous Fourier Transform integral: 1/Fs - FFT preserving signal energy (Pareseval's theorem): 1/sqrt(N)